RoboSoft, Pisa, 1/04/2014

Soft robots for the offshore industry: going where no soft robot has gone

A. Arienti, M. Calisti, M. Giorelli, F. Renda, F. Giorgio Serchi and C. Laschi Centre for Sea Technologies and Marine Robotics

Underwater Robots: State of the Art

THE BIOROBOTICS INSTITUTE

The offshore industry relies on robots extensively because:

- •they are essential
 - big risks for divers
 - bad weather
 - high depth
 - proximity to structures

Underwater Robots: State of the Art

THE BIOROBOTICS INSTITUTE

The offshore industry relies on robots extensively because:

Drill Support

A-X lool

Cutters/Jetters

Work Class

D Mac

- •they are essential
- •the tasks:
 - are numerous
 - are relatively simple
 - have to be carried out
 - frequently

Underwater Robots: State of the Art

Underwater operations are carried out by UUVs:

- ROVs (observation and operation)
- AUVs (monitoring and survey)

Unresolved challenges for standard UUVs entail:

- Work in every sea condition
- Work close to sea bottom or structures
- Work in synergy with divers
- Work in confined space
- Precise manipulation control problem
- Operate close to moving structures

THE BIOROBOTICS

Soft Robots

The soft robotics design proves to be suited for dealing with:

Design of a Soft Unmanned Underwater Vehicle

THE BIOROBOTICS INSTITUTE

Scuola Superiore Sant'Anna

Sought after features:

- Swimming
- Manipulation
- Legged Locomotion
- Flexible/adaptable

The Octopus is the perfect paradigm of Soft Unmanned Underwater Vehicle

Components integration: the birth of PoseiDRONE

THE BIOROBOTICS INSTITUTE

THE BIOROBOTICS

THE BIOROBOTICS

THE BIOROBOTICS

THE BIOROBOTICS

Tank testing

THE BIOROBOTICS INSTITUTE Scuola Superiore Sant'Anna

crawl-swim cycles over plain terrain

crawl-swim cycles while holding object

Deployment testing

from a harbour inside a marina

from a boat in open waters

Test at sea

THE BIOROBOTICS

Scuola Superiore Sant'Anna

crawling over the sea floor

Advantages of Soft ROVs

THE BIOROBOTICS

	PoseiDRONE (Soft)	Traditional Robots (Hard)
Safe Distance (human and/or environment)	Low (can move over surfaces or objects)	High (must avoid contact)
Control Strategy	Simple (simplified by bioinspired design)	Complex (fine control to avoid impact damage)
Docking/Deployment Systems	Simple (low risk of loss or damage)	Complex (high risk of loss or damage)
Load Capacity	Low (related to body deformations)	High (related to robot design)
Noise Pollution	Low (noise reduced by the soft mean)	High (propeller low frequencies loud hiss)
Water-Proof Insulation	Simple (intrinsic waterproof insulation)	Complex (frequent maintainment required)
Working Environments/Conditions	Complex (work in confined space)	Simple (require open space)

Conclusions

- PoseiDRONE is the first example of a soft robot (80% in volume of silicone) with crawling, swimming and manipulation ability to ever venture in the open water;
- Will the "soft approach" have what it takes to win over traditional robotics in such a forbidding scenario as the offshore industry?

Come and see our posters...

THE BIOROBOTICS INSTITUTE

Scuola Superiore Sant'Anna

A soft, bioinspired pulsed-jet propelled underwater robot

Control strategies for soft robots Geometrically exact modeling for soft robots

The bioinspiration design paradigm for legged soft robots

